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1. Introduction

Despite the fact that there are a lot of models to express non-Newtonian behavior
of the fluids however in recent years, the Johnson-Segalman fluid has acquired a special
class, as it includes as special cases the classical Newtonian fluid and Maxwell fluid. The
Johnson-Segalman model is a viscoelastic fluid model which was developed to allow for
nonaffine deformations by Johnson and Segalman (1977). Various researchers (Kolkka et
al., 1988; Malkus et al., 1990; McLeish and Ball,1986) used this model to explain the
happening of “spurt”. The term “spurt” is worn to show the hefty increase in the volume
through put for a small increase in the driving pressure gradient at a critical value of the
pressure gradient that is observed in the flow of numerous non-linear fluids. Rao and

Rajagopal (1999) considered three distinct flows of Johnson-Segalman fluid. Contrasting
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most other fluid models, the Johnson-Segalman (JS) fluid permits for a non-monotonic
relationship between the shear stress and the rate of strain in a shear flow for certain
values of the material parameter. Despite the fact that the JS model offers a incredibly
interesting means for elucidation “spurt”, it appears more likely that the trend is because
of the “stick slip” that takes place at the boundary. Peristaltic motion of a Johnson-
Segalman fluid in a channel was studied by Hayat et al. (2003). Elshahed and Haroun
(2005) have considered the peristaltic pumping of Johnson-Segalman fluid under effect
of a magnetic field.

The basic perception regarding MHD is the magnetic field which induces the
currents in conductive moving fluids which in results generates the forces on the fluid
and also varies the magnetic field itself. It is well known that when any conductor comes
into a magnetic field which in results creates a voltage, which is perpendicular to the
current and field, this effect is known as Hall Effect. Hayat et al. (2007) have investigated
the Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Effects of Hall
and ion-slip currents on peristaltic transport of a couple stress fluid was analyzed by Abo-
Eldahab et al. (2010). Gad (2014) has studied the effects of Hall current on peristaltic
transport with compliant walls. Eldabe (2015) have studied the Hall Effect on peristaltic
flow of third order fluid in a porous medium with heat and mass transfer. Hall effects on
the peristaltic transport of Williamson fluid through a porous medium with heat and mass
transfer was discussed by Eldabe et al. (2016). Hall effect on the peristaltic flow of a
Johnson-Segalman fluid in a channel was investigated by Subba Narasimhudu (2017).
Ranjitha and Subba Reddy (2018) have analyzed the radiation effects on the peristaltic
flow of a Williamson fluid through a porous medium in a planar channel.

In view of these, we studied the Hall effects on the peristaltic flow of a Johnson-
Segalman fluid through a porous medium in a two - dimensional channel. The flow is
studied in a wave frame of reference moving with velocity of the wave under the
assumptions of long-wavelength and low-Reynolds number. A Perturbation solution for
small Weissenberg number is obtained for the axial velocity, axial pressure gradient and
pressure rise per one wavelength. The effects of various emerging parameters on the

pressure gradient and pumping characteristics are discussed with the aid of graphs.
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2. Mathematical Formulation

We consider an incompressible, conducting Johnson-Segalman fluid through a
porous medium confined in a two dimensional infinite symmetric channel of width 2a.
We employ a rectangular coordinate system with X parallel to and Y normal to the
channel walls. Moreover, we consider an infinite wave train traveling with velocity c

along the channel walls. . A uniform magnetic field B, applied in the transverse direction

to the flow. Fig. 1 shows the physical model of the problem. The symmetric channel

walls are defined as
.| 27
LH (X.1)=a ibsm{T(X —ct)} e

Here b is the amplitudes of the waves, ¢ is the time and A is the wavelength.

The equations governing the flow of an incompressible fluid are

divl =0 diva+pf=pil—1;

(2.2)

d
where V is the velocity field, f is the body force per unit mass, pis the fluid density, — is

the material derivative and o is the Cauchy stress tensor given by Johnson et al. (1977).

o=-pl+T

(2.3)
T=2uD+S

(2.4)
S+m[i{—f+S(W—eD)+(W—eD)TS}:277D 2.5)
D:%[L+LTJ, W:%[L—LTJ, L =gradV (2.6)
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Fig. 1 The Physical Model

The equations above include the scalar pressure p, the identity tensor/, the dynamic
viscosities u and #, the relaxation time m, the slip parameter e and the respective
symmetric and skew symmetric part of the velocity gradient D and/ . Note that, our

model reduces to the Maxwell fluid model for e=1land # =0, and for m=0=u, it

reduces to the classical Navier-Stokes fluid model.

The velocity for unsteady two-dimensional flows is defined as
V=[U(X,Y,t),V(X,Y,t),0] (2.7)
In the fixed frame (X Y ) the motion is unsteady, while it becomes steady in the
wave frame (x, y). The transformation from the fixed frame of reference (X , Y ) to the
wave frame of reference (x, y) is given by

x=X-ct,y=Y,u=U-c, v=V, p(x)=P(X,t) (2.8)
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Here u, v and U, V are the velocity components in the wave frame and in the fixed frame,

respectively.
From equations (3.2) - (3.7), we obtain, when body forces are absent, in the wave

frame:
ou_ v _, (2.9)
ox Oy
2 2 oS 2
P u@_u_ﬂ}@_u __% 7, 8124+6L2t +6Sxx+ =+ O-Boz(mv—(u+c))—ﬁ(u+c)
ox Oy ox ox~ Oy ox oy l+m k

(2.10)

2 2 2
( i avj P [av+6vJ+55xy+5Syy 75, (m(u+c)+V)—%v

Uu—+v—|= -
P ox Oy oy ox> oy’ ox oy 1+m’
2.11)
2778—u=Sm+m ui+vi SM—Zemexa—u+m (l—e)@—(l-ke)a—u S
Ox x Oy ox Ox oy | ¥
(2.12)
ou oOv 0 0 m ou ov
i =5 v Zls + 2 (1-e)E-(1+e) L s
”(afaxj xy+m(uax+vayJ xy+2{( e)ay (+e)ax} .
m ov ou
+—|(1-e)——(1+e)—|S
00202 s,
(2.13)
ov 0 0 ov
277—:Syy+m(ua+v§ijy—2emSW§
im|(1—) % —(1+0) 2 s,
oy ox | ¥
(2.14)

Using the following non — dimensional variables
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;C:i’ ;:Z, ;:za ;:Kahzﬁagzi‘sa;: p:é‘_ga
A a c c a Lc /l(y+77)c A
Re_PCa . _me b 2.15)
ILI b a 9 a b *
into the equations (2.8) — (2.13), we have (after dropping the bars)
a—u-i-@:(), (2.16)
ox Oy
2 2
Res| a4y 0| o[ HE1)\P 528—Z+6—Z
ox Oy U )Ox ox~ Oy
oS 2
45 Bu  Pn M 2(m5v—(u+1))—L(u+l) (2.17)
ox oy l+m Da
2 2
Re*| uPl sy | o[ HF\DP 50 526—§+a—f
ox Oy L )oy ox~ 0Oy
oS oS 2 2
+52 24§ yy—aMz(m(u+1)+5v)—6—v (2.18)
ox oy l+m Da
210 a—quxx+Wi§ u£+vi Sxx—2eWi5Sxxa—u
U )Ox ox Oy ox
ov ou
+Wi| 8*(1—e)——(1+e)— |S 2.19
(#0-02-0:92)s, 219
20 s Vs wis|ul v s LM (1—e)a—”—(1+e)52@ S
u\ oy ox Y ox oy) " 2 oy ox
Wi ov ou
+—| (1-e)d* ——(1+e)—|S,, (2.20
-9 2 -gea2s, e
219 @zS +Wio ui-kvi S —2eWioS o
u oy w Ox oy ) " Y oy
ou ov
+Wil (1—e)—-5>(1+e)— |S 2.21
(-02-sarals, e

Under lubrication approach, neglecting the terms of order 60 and Re, from

Equations (3.17) and (3.18), we get
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2 aS 2
0=—| #F70 6_p+81,2¢+ =+ — M2+ : (u+1) (2.22)
i )Ox Oy oy l+m”~ Da
N B/ N 0 (2.23)
“o)oy oy
where
) ou
S, = Wz(l+e)5Sxy (2.24)
n ou Wi ou Wi ou
;5: xy+7(1_e)5Sxx_7(1+e)5Syy (2.25)
) ou
S, =-Wi(l ‘6)5% (2.26)
2
S, + Wi (1- ez)[a—”j S, = nom 2.27)
o H Oy

From Equation (2.23), p is a function of x only. Therefore, using Equations (2.23) —

(2.27), the Equation (2.22) can be rewritten as

2 3 2
d_P:a_Z‘JrWizalﬁ L I — @ (2.28)
dx Oy oy |\ oy [1+77j l+m” Da
y7i
2 2
(=n_(¢-1) _u
where &) = = V=
(u+m)  (r+1)" 7
The corresponding non - dimensional boundary conditions are
u=-1 at y=h=1+¢sin2zx
ou =0 at y=0 (2.29)
dy
The volume flow rate in a wave frame is given by
h
q= JO udy (2.30)

The flux at any axial station in the laboratory frame is

27 http://adalyajournal.com/



ADALYA JOURNAL

https://doi.org/10.37896/aj11.5/002 ISSN NO: 1301-2746

Q(x,t):_[oh(u+l)dy:q+h (2.31)

The average volume flow rate over one wave period T (=A/c) of the peristaltic

wave 1s defined as

_ 1 %
0=—[0dt=q+1 (2.32)

T 0

3. Solution

The Equation (2.28) is non-linear and its closed form solution is not possible.
Thus, we linearize this equation in terms of Wi, since Wi is small for the type of flow
under consideration. So we expand u, pand g as

u=u, +Wiu, +0(Wi4)

d—p=%+Wi2%+o(Wi4)
dx dx dx

q:q0+Wi2ql+0(Wi4) (3.1)
Substituting the above expressions in to the Equation (3.28) and in to the boundary
conditions (3.29), we obtain

3.1 Equations of order Wi’

dp, 0u, % M’ 1
= — 1 3.2
dc o' (1+7) 1+m2+Da (40 1) G-2)

The corresponding boundary conditions are

u,=—1 at y=h (3.3)
Wy 0 at y=0 (3.4)
oy

3.2 Equations of order i’

2 3 2
9o 0y, g O[O ||y | ML, (3.5)
dx oy oy|\ oy (1+y)\1+m*> Da
The corresponding boundary conditions are
u, =0 at yv=h (3.6)
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0

e ) at  y=0 (3.7)
oy

3.3 Solution of order Wi’

Solving the Equation (3.2) by using the boundary conditions (3.3) and (3.4), we

get
" :%%{M_l}_l (3.8)
o’ dx | coshah
) y M? 1
here & = + .
WheTe (1+}/)(1+m2 Daj

and the volume flow rate ¢, is given by

1 dp, | (sinhah—ahcoshah)
= |udy =——> —h 3.9
% !; S d { coshah (3:9)
From Equation (3.9), we obtain
dp, a’(q,+h)coshah .10

dx  sinhah—ahcoshah

3.4 Solution of order Wi’
Solving the Equation (3.5) by using the boundary conditions (3.6) and (3.7), we
get

_L%(coshay _1}_ 3a, (a’pO I( coshay ){coshfﬁah B hsinhah}

" a? dx \ coshah 20° \ dx cosh* ah 16a? da
3a, ( dp, ’ 1 cosh3ay ysinhay
— 5 3 S (3.11)
2007\ dx cosh’ ah 16 4o

and the volume flow rate ¢, is given by

q, =

3
1 dp, (sinhah —ah coshoch)Jr 3a, [ A j o’ (g, +h)coshah
o’ dx (

cosh ah 2a*\ cosh’ ah )| (sinhah—ahcoshah)

(3.12)

where
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_ tanhahcosh3ah B htanh ahsinh ah B sinh3ah N hcoshah B sinh ah
16 4 48 4 da

A

From Equation (3.12), we obtain

dp,  a’coshahq  3aa’d (g, + h)3 coshah (3.13)
dx sinhah—ahcoshah 2 | (sinhah-ahcosh ah)4 '

Substituting Equations (3.10) and (3.13) into the second equation of (3.1) and

neglecting terms greater than O(Wi2 ) , we get

dp &’ (q+h)coshah  3a,4a° Wi (g+ h)3 cosharh G4
— = — 1 .
dx sinhah—ahcoshah 2 (sinh @h — ahcosh ah)4

The dimensionless pressure rise per one wavelength in the wave frame is given by
Ap:jo L oix (3.15)

where h=1+¢sin2rx.

Note that, as Da — oo our results coincide with the results of Subba Narasimhudu (2017).

4. Discussion of the results

)
Fig. 2 illustrates the variation of the axial pressure gradient d_p with Wi fory =1,
X

e=0.5, m=03, M=1,Da=0.1, $=0.6 and @z—l. It is found that, the axial

. d o : : :
pressure gradient d_p decreases with increasing Weissenberg number Wi
X

)
The variation of the axial pressure gradient d_p with y for e=0.5 Wi=0.02, m=0.3
X
, M=1,Da=0.1, $=0.6 and é =-1. @ =—1 is illustrated in Fig. 3. It is observed

: . d I .
that, the axial pressure gradient d_p decreases with increasing J .
X
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d
Fig. 4 shows the variation of the axial pressure gradient d_p with e fory =1,Wi=0.02,
X

m=03, M=1,Da=0.1, $=0.6 and é =—1. It is noticed that, the axial pressure

. dp . o . .
gradient d_ increases with increasing slip parameter e.
x

d
The variation of the axial pressure gradient d_p with m for y=1,Wi=0.02,
x

e=05, M=1,Da=0.1, $=0.6 and éz—l is shown in Fig. 5. It is observed that,

: . oy ,
the axial pressure gradient d—p decreases with increasing Hall parameter m.
X

d
Fig. 6 illustrates the variation of the axial pressure gradient d_p with Da for
x

y=1,Wi=0.02, e=05, m=03,M=1, $=0.6 and éz—l. It is found that, the

, . dp . . : :
axial pressure gradient @ increases with an increase in Darcy number Da .
X

The variation of the axial pressure gradient Z—p with M for y=1,Wi=0.02,
X

e=05, m=03,Da=0.1, $=0.6 and é = —1is illustrated in Fig. 7. It is noticed

dp

that, the axial pressure gradient d_ increases with increasing Hartmann number M .
x

d
Fig. 8 depicts the variation of the axial pressure gradient d_p with ¢ for y =1,
X
Wi=0.02,e=0.5, m=03, M =1,Da=0.1and @: —1. It is found that, the axial

pressure gradient & increases with increasing amplitude ratio ¢ .
x

The variation of the pressure rise Ap with @ for different values of Wi with

y=1, e=0.5, m=03, M=1,Da=0.1 and ¢=0.6is depicted in Fig. 9. It is

observed that, in the pumping region (Ap >O) , the @ decreases with increasing
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weissenberg number Wi and it increases in both the free-pumping(Ap = 0) and co-
pumping(Ap < 0) regions with increasing Wi .

Fig. 10 shows the variation of the pressure rise Ap with @ for different values of
y with e=0.5,Wi=0.1, m=03, M =1,Da=0.1 and ¢=0.6. It is noticed that, in
the pumping region, the é increases with increasing » and it decreases in both the free-
pumping and co-pumping regions with increasing J .

The variation of the pressure rise Ap with é for different values of e with
y=1, Wi=0.1, m=03, M =1,Da=0.1 and ¢=0.6is shown in Fig. 11. It is
observed that, in the pumping region (Ap > 0) and pre-pumping( Ap = 0) region, the é
increases with increasing e, while it decreases in the co-pumping(Ap < 0) region with
increasing e for the chosen Ap(< O) .

Fig. 12 illustrates the variation of the pressure rise Ap with @ for different
values of m with y =1,e=0.5, Wi=0.1, M =1,Da=0.1 and ¢=0.6. It is found
that, in the pumping region, the @ decreases with increasing m, while it increases in
both the free-pumping and co-pumping regions with increasing m.

The variation of the pressure rise Ap with é for different values of Da with
y=1,e=0.5, Wi=0.1, m=0.3, Da=0.1 and ¢=0.6 is shown in Fig. 13. It is
noticed that, in the pumping region, the é decreases with increasing Da, while it
increases in both the free-pumping and co-pumping regions with increasing Da .

Fig. 14 depicts the variation of the pressure rise Ap with é for different values
of M with y=1,e=0.5, Wi=0.1, m=0.3, Da=0.1 and ¢=0.6. It is observed
that, in the pumping region, the é increases with increasing M , while it decreases in
both the free-pumping and co-pumping regions with increasing M .

The variation of the pressure rise Ap with é for different values of ¢ with

y=1,e=0.5,Wi=0.1,m=03, M =1,Da=0.1 and ¢=0.6 is depicted in Fig. 15.
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It is found that, in the pumping region (Ap > 0) and pre-pumping(Ap = O)region, the
é increases with increasing ¢ while it decreases in the co-pumping(Ap < 0) region

with increasing ¢ for the chosen value Ap(<0) .

5. Conclusions

In this chapter, we studied effect of hall on the peristaltic transport of a Johnson-
Segalman fluid through a porous medium in a two - dimensional channel under the
assumptions of long-wavelength. Perturbation solution for small Weissenberg number is

obtained for the axial velocity, axial pressure gradient and pressure rise per one

. . d o . :
wavelength. It is found that the pressure gradient d_p decreases with increasing Wi, Da
X

or m, whereas it increases with increasing y,e,M or ¢ . In the pumping region, the

time averaged flux O decreases with increasing Wi, Da or m, whereas it increases with
increasing y,e,M or ¢ . The friction force F' first increases and then decreases with

increasing Wi.
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Fig. 2 The variation of the axial pressure gradient d_p with Wi fory =1,e=10.5,
x

m=03,Da=0.1, M =1, $=0.6 and 0 =-1.
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120 L] L] L] L]

100

d
Fig. 3 The variation of the axial pressure gradient d_p with y for e=0.5 Wi=0.02,
x

m=03,Da=0.1,M=1,¢=0.6and Q=-1.
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100
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Fig. 4 The variation of the axial pressure gradient d_p with e fory =1,Wi =10.02,
X

m=03,Da=0.1, M =1, $=0.6 and éz—l.
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100 T T T T
m=0,0.3,0.8

dx

q
Fig. 5 The variation of the axial pressure gradient d—p with m for y =1,Wi=10.02,
X

e=0.5,Da=0.1, M =1, $=0.6 and O =—1.
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Fig. 6 The variation of the axial pressure gradient d_p with Da for ¥y =1,Wi=0.02,
x

=05 M=1,m=03, ¢=0.6 and O =—1.
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120 L] L] L] 1

¥
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100

)
Fig. 7 The variation of the axial pressure gradient d—p with M for y =1,Wi=10.02,
X

e=0.5,Da=0.1,m=0.3, $=0.6 and éz—l.
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100 1 L] 1 L]

Fig. 8 The variation of the axial pressure gradient Z—p with ¢ for y =1,Wi=0.02,
X

e=0.5,Da=0.1, m=03 ,M =1and éz—l.
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10 L] L] L] L]

0

Fig. 9 The variation of the pressure rise Ap with é for different values of Wi with
y=1,e=0.5,Da=0.1, m=03, M =1and ¢=0.6.
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10 L] 1 1 L]

0

Fig. 10 The variation of the pressure rise Ap with @ for different values of y with
e=0.5,Da=0.1,Wi=0.1,m=03, M=1and ¢=0.6.
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10 L] 1 1 L]

0

Fig. 11 The variation of the pressure rise Ap with @ for different values of e with
y=1,Da=0.1, Wi=0.1, m=03, M =1and ¢=0.6.
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0.2

0

Fig. 12 The variation of the pressure rise Ap with @ for different values of m with

y=1,Da=0.1,e=05,Wi=0.1, M =1 and ¢=0.6.
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Fig. 13 The variation of the pressure rise Ap with @ for different values of Da with

y=1,M=1,e=05,Wi=0.1,m=0.3 and ¢=0.6.
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Fig. 14 The variation of the pressure rise Ap with @ for different values of M with
y=1,Da=0.1,e=0.5,Wi=0.1,m=0.3 and ¢=0.6.
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Fig. 15 The variation of the pressure rise Ap with é for different values of ¢ with

y=1,Da=0.1,e=0.5,Wi=0.1,m=0.3 and M =1
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