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Abstract— In this paper, the effect of Hall on the Johnson-Segalman fluid  

through a porous medium in a two-dimensional  channel under the assumption of 

long wavelength is investigated. A Closed form solutions are obtained for axial 

velocity and pressure gradient. The effects of various emerging parameters on the 

pressure gradient, time averaged volume flow rate and frictional force are discussed 

with the aid of graphs. 
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1. Introduction 

              Despite the fact that there are a lot of models to express non-Newtonian behavior 

of the fluids however in recent years, the Johnson-Segalman fluid has acquired a special 

class, as it includes as special cases the classical Newtonian fluid and Maxwell fluid. The 

Johnson-Segalman model is a viscoelastic fluid model which was developed to allow for 

nonaffine deformations by Johnson and Segalman (1977). Various researchers (Kolkka et 

al., 1988; Malkus et al., 1990; McLeish and Ball,1986) used this model to explain the 

happening of “spurt”. The term “spurt” is worn to show the hefty increase in the volume 

through put for a small increase in the driving pressure gradient at a critical value of the 

pressure gradient that is observed in the flow of numerous non-linear fluids. Rao and 

Rajagopal (1999) considered three distinct flows of Johnson-Segalman fluid. Contrasting 
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most other fluid models, the Johnson-Segalman (JS) fluid permits for a non-monotonic 

relationship between the shear stress and the rate of strain in a shear flow for certain 

values of the material parameter. Despite the fact that the JS model offers a incredibly 

interesting means for elucidation “spurt”, it appears more likely that the trend is because 

of the “stick slip” that takes place at the boundary. Peristaltic motion of a Johnson-

Segalman fluid in a channel was studied by Hayat et al. (2003). Elshahed and Haroun 

(2005) have considered the peristaltic pumping of Johnson-Segalman fluid under effect 

of a magnetic field.  

The basic perception regarding MHD is the magnetic field which induces the 

currents in conductive moving fluids which in results generates the forces on the fluid 

and also varies the magnetic field itself. It is well known that when any conductor comes 

into a magnetic field which in results creates a voltage, which is perpendicular to the 

current and field, this effect is known as Hall Effect. Hayat et al. (2007) have investigated 

the Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Effects of Hall 

and ion-slip currents on peristaltic transport of a couple stress fluid was analyzed by Abo-

Eldahab et al. (2010). Gad (2014) has studied the effects of Hall current on peristaltic 

transport with compliant walls. Eldabe (2015) have studied the Hall Effect on peristaltic 

flow of third order fluid in a porous medium with heat and mass transfer. Hall effects on 

the peristaltic transport of Williamson fluid through a porous medium with heat and mass 

transfer was discussed by Eldabe et al. (2016). Hall effect on the peristaltic flow of a 

Johnson-Segalman fluid in a channel was investigated by Subba Narasimhudu (2017).  

Ranjitha and Subba Reddy (2018) have analyzed the radiation effects on the peristaltic 

flow of a Williamson fluid through a porous medium in a planar channel.  

              In view of these, we studied the Hall effects on the peristaltic flow of a Johnson-

Segalman fluid through a porous medium in a two - dimensional channel. The flow is 

studied in a wave frame of reference moving with velocity of the wave under the 

assumptions of long-wavelength and low-Reynolds number. A Perturbation solution for 

small Weissenberg number is obtained for the axial velocity, axial pressure gradient and 

pressure rise per one wavelength. The effects of various emerging parameters on the 

pressure gradient and pumping characteristics are discussed with the aid of graphs. 
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2. Mathematical Formulation 

 

We consider an incompressible, conducting Johnson-Segalman fluid through a 

porous medium confined in a two dimensional infinite symmetric channel of width 2a . 

We employ a rectangular coordinate system with X parallel to and Y normal to the 

channel walls. Moreover, we consider an infinite wave train traveling with velocity c 

along the channel walls. . A uniform magnetic field 0B  applied in the transverse direction 

to the flow. Fig. 1 shows the physical model of the problem. The symmetric channel 

walls are defined as  

                 2
, sinH X t a b X ct




       
        (2.1) 

Here b is the amplitudes of the waves, t is the time and is the wavelength. 

The equations governing the flow of an incompressible fluid are 

              div 0V                   div
dV

f
dt

                                                                            

                                                                                                                                     (2.2) 

whereV is the velocity field, f is the body force per unit mass,  is the fluid density,
d

dt
is 

the material derivative and is the Cauchy stress tensor given by Johnson et al. (1977). 

              pI T                                                                                              

                                                                                                                                      (2.3) 

              2T D S                                                                                           

                                                                                                                                      (2.4) 

                  2
TdS

S m S W eD W eD S D
dt

        
                                 (2.5) 

              
1

,
2

TD L L              
1

,
2

TW L L            gradL V                       (2.6) 
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Fig. 1 The Physical Model  

  

The equations above include the scalar pressure p, the identity tensor I , the dynamic 

viscosities μ and η, the relaxation time m, the slip parameter e and the respective 

symmetric and skew symmetric part of the velocity gradient D  andW . Note that, our 

model reduces to the Maxwell fluid model for 1e  and 0  , and for 0m   , it 

reduces to the classical Navier-Stokes fluid model.  

     The velocity for unsteady two-dimensional flows is defined as 

             , , , , , ,0V U X Y t V X Y t                                                                   (2.7) 

In the fixed frame  ,X Y the motion is unsteady, while it becomes steady in the 

wave frame  ,x y . The transformation from the fixed frame of reference  ,  X Y  to the 

wave frame of reference  ,  x y  is given by 

,x X ct  ,y Y ,u U c   ,v V     ,p x P X t                                        (2.8) 
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Here u, v and U, V are the velocity components in the wave frame and in the fixed frame, 

respectively. 

From equations (3.2) - (3.7), we obtain, when body forces are absent, in the wave 

frame: 

0
u v

x y

 
 

 
          (2.9) 

    
22 2
0

2 2 21
xyxx

SS Bu u p u u
u v mv u c u c

x y x x y x y m k

  
       

                       
              

(2.10) 

  
22 2
0

2 2 21
xy yyS S Bv v p v v

u v m u c v v
x y y x y x y m k

  
       

                      
         

             

(2.11) 

     2 2 1 1xx xx xx xy

u u v u
S m u v S emS m e e S

x x y x x y


        
                  

                     

                            

                                                              (2.12) 

   1 1
2xy xy xx

u v m u v
S m u v S e e S

y x x y y x

          

                      
              

              1 1
2 yy

m v u
e e S

x y

  
      

       

                                                                        (2.13) 

 

2 2yy yy yy

v v
S m u v S emS

y x y y


    
        

                       

   1 1 xy

u v
m e e S

y x

  
      

                           

                                                                       (2.14) 

Using the following non – dimensional variables  
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x
x


 , ,

y
y

a
  ,

u
u

c
  ,

v
v

c
 ,

H
h

a
 ,

a
S S

c


 
2

,
a

p p
c  




,
a


  

Re ,
ca


  ,
mc b

Wi
a a

   ,                                                      (2.15) 

into the equations (2.8) – (2.13), we have (after dropping the bars) 

  0,
u v

x y

 
 

 
                                                                                                          (2.16) 

2 2
2

2 2
Re

u u p u u
u v

x y x x y

  


         
                

                

               
2

2

1
1 1

1
xyxx

SS M
m v u u

x y m Da
 


      

  
  (2.17)                                     

2 2
3 2 2

2 2
Re

v v p v v
u v

x y y x y

   


         
                

        

                     
  

2 2
2

2
1

1
xy yyS S M

m u v v
x y m Da

   
 

     
  

             (2.18) 

 
2

2xx xx xx

u u
S Wi u v S eWi S

x x y x

  


      
            

                            

   2 1 1 xy

v u
Wi e e S

x y

  

      
   (2.19) 

   2 21 1
2xy xy xx

u v Wi u v
S Wi u v S e e S

y x x y y x

   

          

                      
     

            21 1
2 yy

Wi v u
e e S

x y


  
      

  (2.20) 

2
2yy yy yy

v v
S Wi u v S eWi S

y x y y

  


      
            

                  

   21 1 xy

u v
Wi e e S

y x


  
      

             (2.21) 

Under lubrication approach, neglecting the terms of order   and Re, from 

Equations (3.17) and (3.18), we get 
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2 2

2 2

1
0 ( 1)

1
xySp u M

u
x y y m Da

 


     
               

                                 (2.22) 

0
p

y

 


  
    

         0
p

y


 


                                                                          (2.23) 

where 

 1xx xy

u
S Wi e S

y


 


                                                                                              (2.24) 

   1 1
2 2xy xx yy

u Wi u Wi u
S e S e S

y y y



  

    
  

                                                        (2.25) 

 1yy xy

u
S Wi e S

y


  


                                                                                            (2.26) 

 
2

2 21xy xy

u u
S Wi e S

y y




  
     

                                                                        (2.27) 

From Equation (2.23), p  is a function of x  only. Therefore, using Equations (2.23) – 

(2.27), the Equation (2.22) can be rewritten as  

32 2
2

12 2

1 1
( 1)

1
1

dp u u M
Wi u

dx y y y m Da





      
                   

 

                          (2.28) 

 where 
 
 

 
 

2 2

1

1 1
,

1

e e  
   
 

  
    

 

The corresponding non - dimensional boundary conditions are 

 1u    at 1 sin 2y h x     

 0
u

y





 at 0y         (2.29) 

The volume flow rate in a wave frame is given by 

0

h
q udy          (2.30)  

The flux at any axial station in the laboratory frame is 
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   
0

, 1
h

Q x t u dy q h          (2.31) 

The average volume flow rate over one wave period T (= / c ) of the peristaltic 

wave is defined as 

 
0

1
1

T

Q Q d t q
T

          (2.32) 

3. Solution 

The Equation (2.28) is non-linear and its closed form solution is not possible. 

Thus, we linearize this equation in terms of 2Wi , since Wi  is small for the type of flow 

under consideration. So we expand ,u p and q  as  

 
 

2 4
0 1

2 40 1

u u Wi u o Wi

dpdp dp
Wi o Wi

dx dx dx

  

  
  

 2 4
0 1q q Wi q o Wi                                        (3.1) 

Substituting the above expressions in to the Equation (3.28) and in to the boundary 

conditions (3.29), we obtain 

3.1 Equations of order 0Wi  

   
2 2

0 0
02 2

1
1

1 1

dp u M
u

dx y m Da




 
       

                                        (3.2) 

The corresponding boundary conditions are 

0 1u     at   y h             (3.3) 

0 0
u

y





   at    0y             (3.4) 

3.2 Equations of order 2Wi  

 

32 2
01 1

1 12 2

1

1 1

udp u M
u

dx y y y m Da




     
                

                             (3.5) 

  The corresponding boundary conditions are 

   1 0u      at    y h          (3.6)   
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1 0
u

y





   at     0y           (3.7)  

3.3 Solution of order 0Wi  

Solving the Equation (3.2) by using the boundary conditions (3.3) and (3.4), we 

get 

0
0 2

1 cosh
1 1

cosh

dp y
u

dx h


 

     
        (3.8) 

where  
2

2

2

1
.

1 1

M

m Da




 
    

 

and the volume flow rate 0q  is given by    

 0
0 0 3

0

sinh cosh1

cosh

h h h hdp
q u dy h

dx h

  
 

 
   

 
       (3.9) 

From Equation (3.9), we obtain 

 3
00

cosh

sinh cosh

q h hdp

dx h h h

 
  





        (3.10) 

3.4 Solution of order 2Wi  

Solving the Equation (3.5) by using the boundary conditions (3.6) and (3.7), we 

get 

3

01 1
1 2 2 4 2

1 cosh 3 cos cosh 3 sinh
1

cosh 2 cosh 16 4

dpdp y h y h h h
u

dx h dx h

    
     

                     
 

3

01
2 3 2

3 1 cosh 3 sinh

2 cosh 16 4

dp y y y

dx h

  
   

              
  (3.11) 

and the volume flow rate 1q  is given by 

 
 

33
01 1

1 3 4 3

cosh1 sinh cosh 3

cosh 2 cosh sinh cosh

q h hdp h h h A
q

dx h h h h h

    
      

                
 

           (3.12)  

where  
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tanh cosh 3 tanh sinh sinh 3 cosh sinh

16 4 48 4 4

h h h h h h h h h
A

      
  

      

From Equation (3.12), we obtain 

 
 

33 8
01 1 1

4

coshcosh 3

sinh cosh 2 sinh cosh

q h hdp hq A

dx h h h h h h

   
     

 
   

   
  (3.13) 

Substituting Equations (3.10) and (3.13) into the second equation of (3.1) and 

neglecting terms greater than  2
iO W , we get 

   
 

33 8
21

4

cosh cosh3

sinh cosh 2 sinh cosh

q h h q h hdp A
Wi

dx h h h h h h

   
     

  
   

   
  (3.14) 

The dimensionless pressure rise per one wavelength in the wave frame is given by 

 
2

0

dp
p dx

dx


           (3.15) 

where 1 sin 2h x   . 

Note that, as Da  our results coincide with the results of Subba Narasimhudu (2017).  

4. Discussion of the results 

Fig. 2 illustrates the variation of the axial pressure gradient 
dp

dx
 with Wi  for 1  ,

0.5e  , 0.3m  , 1M  , 0.1Da  , 0.6   and 1Q   .  It is found that, the axial 

pressure gradient 
dp

dx  
decreases with increasing Weissenberg number Wi  

The variation of the axial pressure gradient 
dp

dx
 with   for 0.5e  , 0.02Wi  , 0.3m 

, 1M  , 0.1Da  , 0.6   and 1Q   . 1Q    is illustrated in Fig. 3.  It is observed 

that, the axial pressure gradient 
dp

dx
 decreases with increasing  . 
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Fig. 4 shows the variation of the axial pressure gradient 
dp

dx
 with e  for 1  , 0.02Wi  , 

0.3m  , 1M  , 0.1Da  , 0.6   and 1Q   . It is noticed that, the axial pressure 

gradient 
dp

dx
 increases with increasing slip parameter e .  

The variation of the axial pressure gradient 
dp

dx
 with m for 1  , 0.02Wi  , 

0.5e  , 1M  , 0.1Da  , 0.6   and 1Q    is shown in Fig. 5. It is observed that, 

the axial pressure gradient 
dp

dx
 decreases with increasing Hall parameter m .  

Fig. 6 illustrates the variation of the axial pressure gradient 
dp

dx
 with Da  for 

1  , 0.02Wi  , 0.5e  , 0.3m  , 1M  , 0.6   and 1Q   . It is found that, the 

axial pressure gradient 
dp

dx
 increases with an increase in Darcy number Da .  

The variation of the axial pressure gradient 
dp

dx
 with M  for 1  , 0.02Wi  , 

0.5e  , 0.3m  , 0.1Da  , 0.6   and 1Q   is illustrated in Fig. 7. It is noticed 

that, the axial pressure gradient 
dp

dx
 increases with increasing Hartmann number M .  

Fig. 8 depicts the variation of the axial pressure gradient 
dp

dx
 with   for 1  ,

0.02Wi  , 0.5e  , 0.3m  , 1M  , 0.1Da  and 1Q   .  It is found that, the axial 

pressure gradient 
dp

dx
 increases with increasing amplitude ratio  .   

The variation of the pressure rise p  with Q  for different values of Wi  with

1  , 0.5e  , 0.3m  , 1M  , 0.1Da   and 0.6  is depicted in Fig. 9. It is 

observed that, in the pumping region  0p   , the Q  decreases with increasing 
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weissenberg number Wi  and it increases in both the free-pumping  0p    and co-

pumping  0p   regions with increasing Wi . 

Fig. 10 shows the variation of the pressure rise p  with Q  for different values of 

  with 0.5e  , 0.1Wi  , 0.3m  , 1M  , 0.1Da   and 0.6  . It is noticed that, in 

the pumping region, the Q  increases with increasing   and it decreases in both the free-

pumping and co-pumping regions with increasing  . 

The variation of the pressure rise p  with Q  for different values of e  with   

1  , 0.1Wi  , 0.3m  , 1M  , 0.1Da   and 0.6  is shown in Fig. 11. It is 

observed that, in the pumping region  0p   and pre-pumping  0p  region, the Q  

increases with increasing e , while it decreases in the co-pumping  0p  region with 

increasing e  for the chosen  0p   . 

Fig. 12 illustrates the variation of the pressure rise p  with Q  for different 

values of m  with 1  , 0.5e   , 0.1Wi  , 1M  , 0.1Da   and 0.6  . It is found 

that, in the pumping region, the Q  decreases with increasing m , while it increases in 

both the free-pumping  and co-pumping regions with increasing m . 

The variation of the pressure rise p  with Q  for different values of Da  with 

1  , 0.5e   , 0.1Wi  , 0.3m  , 0.1Da   and 0.6   is shown in Fig. 13. It is 

noticed that, in the pumping region, the Q  decreases with increasing Da , while it 

increases in both the free-pumping  and co-pumping regions with increasing Da . 

Fig. 14 depicts the variation of the pressure rise p  with Q  for different values 

of M  with 1  , 0.5e   , 0.1Wi  , 0.3m  , 0.1Da   and 0.6  . It is observed 

that, in the pumping region, the Q  increases with increasing M , while it decreases in 

both the free-pumping  and co-pumping regions with increasing M . 

 The variation of the pressure rise p  with Q  for different values of   with 

1  , 0.5e   , 0.1Wi  , 0.3m  , 1M  , 0.1Da   and 0.6   is depicted in Fig. 15. 
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It is found that, in the pumping region  0p   and pre-pumping  0p  region, the 

Q  increases with increasing   while it decreases in the co-pumping  0p  region 

with increasing   for the chosen value ( 0)p   . 

5. Conclusions 

In this chapter, we studied effect of hall on the peristaltic transport of a Johnson-

Segalman fluid through a porous medium in a two - dimensional channel under the 

assumptions of long-wavelength.  Perturbation solution for small Weissenberg number is 

obtained for the axial velocity, axial pressure gradient and pressure rise per one 

wavelength. It is found that the pressure gradient 
dp

dx
 decreases with increasing ,Wi Da  

or m , whereas it increases with increasing , ,e M  or  .  In the pumping region, the 

time averaged flux Q  decreases with increasing ,Wi Da  or m, whereas it increases with 

increasing , ,e M  or  . The friction force F  first increases and then decreases with 

increasing Wi .  
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Fig. 2 The variation of the axial pressure gradient 
dp

dx
 with Wi  for 1  , 0.5e  , 

0.3m  , 0.1Da  , 1M  , 0.6   and 1Q   .     
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Fig. 3 The variation of the axial pressure gradient 
dp

dx
 with   for 0.5e  , 0.02Wi  , 

0.3m  , 0.1Da  , 1M  , 0.6   and 1Q   .     
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Fig. 4 The variation of the axial pressure gradient 
dp

dx
 with e for 1  , 0.02Wi  , 

0.3m  , 0.1Da  , 1M  , 0.6   and 1Q   .     
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Fig. 5 The variation of the axial pressure gradient 
dp

dx
 with m for 1  , 0.02Wi  , 

0.5e  , 0.1Da  , 1M  , 0.6   and 1Q   .     
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Fig. 6 The variation of the axial pressure gradient 
dp

dx
 with Da  for 1  , 0.02Wi  , 

0.5e  , 1M  , 0.3m  , 0.6   and 1Q   .     
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Fig. 7 The variation of the axial pressure gradient 
dp

dx
 with M  for 1  , 0.02Wi  , 

0.5e  , 0.1Da  , 0.3m  , 0.6   and 1Q   .     
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Fig. 8 The variation of the axial pressure gradient 
dp

dx
 with   for 1  , 0.02Wi  , 

0.5e  , 0.1Da  , 0.3m   , 1M  and 1Q   .     
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Fig. 9 The variation of the pressure rise p  with Q  for different values of Wi  with 

1  , 0.5e  , 0.1Da  ,  0.3m  , 1M   and 0.6  .     
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Fig. 10 The variation of the pressure rise p  with Q  for different values of   with 

0.5e  , 0.1Da  , 0.1Wi  , 0.3m  , 1M   and 0.6  .     
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Fig. 11 The variation of the pressure rise p  with Q  for different values of e  with 

1  , 0.1Da  , 0.1Wi  , 0.3m  , 1M   and 0.6  .     

 

 

 

 

 

 

 

 

 

 

p   

Q   

1,0.5,0.1e    

ADALYA JOURNAL                                                  https://doi.org/10.37896/aj11.5/002                                                ISSN NO: 1301-2746

Volume 11, Issue 5 May 2022                                                                                                                                       http://adalyajournal.com/43



 

 

Fig. 12 The variation of the pressure rise p  with Q  for different values of m  with 

1  , 0.1Da  , 0.5e   , 0.1Wi  , 1M   and 0.6  .     
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Fig. 13 The variation of the pressure rise p  with Q  for different values of Da  with 

1  , 1M  , 0.5e   , 0.1Wi  , 0.3m   and 0.6  .     
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Fig. 14 The variation of the pressure rise p  with Q  for different values of M  with 

1  , 0.1Da  , 0.5e   , 0.1Wi  , 0.3m   and 0.6  .     
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Fig. 15 The variation of the pressure rise p  with Q  for different values of   with 

1  , 0.1Da  , 0.5e   , 0.1Wi  , 0.3m   and 1M     
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